
mtm^ .11 ll| lUffll win P^|WWWW^»|IW^W»"»^^^^

O

ALGORITHMS TO REVEAL PROPERTIES OF FLOATING-POINT

ARITHMETIC

BY

MICHAELA. MALCOLM

STAN-CS-71-211

MARCH, 1971

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, V» IWtSl

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

.öEULTEUJJ jQ-

•«■•MHaiB

umiM.wiii i u

Unclassified
Secuntv Classification

DOCUMENT CONTROL DATA R&D
iSrcuriiy clatsillcmtion of IM», body of mbtlrmcl und Indmmlng mnnolallon muni be »nl»r»d w/ian f/ie ovmrmtl rtporl It rlatmilltd)

i ORIGINATING ACTIVITY (Corpotalt author)

Stanford University

2«. REPOBT SECURITY Cl-ASSI FIC * T ION

Unclassified
26. CROUP

.' REPORT TITLE

AN ALGORITHM TO REVEAL PROPERTIES OF FLOATING-POINT ARITHMETIC

4 DESCRIPTIVE NOTES (Typ* of rapori and Inelualv data»)

 Technical Report, March 1971
s AUTHORISI (Firtl nama, middla Initial, Ian natna)

Michael A. Malcolm

« REPORT DATE

March 1971
7«. TOTAL NO. OF PA6C« 7b. NO. OF REFS

1
»a. CONTRACT OR GR,AIMT NO

ONR NOOO*£-67-A-0112-OO29 NR 0l+i|-2ll,
b. PROJEC T NO. , „

NSF GJ-408,
AEG AT(0^-5) 526-PA30

M. ORIGINATOR'f REPORT NUMBERItl

STAN-CS-71-211

•b. OTHER REPORT NOitl (Any olhar numbart that may ba aatlfnad
Ihl» raporl)

None
10 DISTRIBUTION STATEMENT

Releasable without limitations on dissemination.
/

H SUPPLEMENTABV NOTES 12. SPONSORING MILITARY ACTIVITV

Mathematics Program
Office of Naval Research
Arlington, Virginia 22217

13. ABSTRACT

Two algorithms are presented in the form of Fortran subroutines.
Each subroutine computes the radix and number of digits of the floating-
point numbers and whether rounding or chopping is done by the machine on
which it is run. The methods are shown to work on any "reasonable"
floating-point computer.

DD FOR». I47Q
I NOV •« I •» / W

S/N 0101.807.6801

(PAGE 1)
Unclassified

Securitv Claaalfication

1 "

Hl, i^UHjimiK .1 .. in p„w

i^^^'^^mmmmmmimmmmmim'm

Unclassified
Security CU»»tfic«Uon

1

Klv wonot
LINK ■

NOLI WT NOLK WT ROLK WT

Floating-Point Arithmetic
High-Level Languages
Philosophy of Language Design

DD .'^..1473 <BACK»
(PAGE 2)

Unclassified
Security Claaaiflcatlon

1

- ■ - - —M ■HMMMMilHai

»»■■■HFT""'"

ALGORITHMS TO REVEAL PROPERTIES OF FLOATING-POINT

ARITHMETIC

Michael A. kalcolm

Abstract

Two algorithms are presented in the form of Fortran subroutines.

Each subroutine computes the radix and number of digits of the floating-

point numbers and whether rounding or chopping is done by the machine

on which it is run. The methods are shown to work on any "reasonable"

floating-point computer.

Keywords: Floating-Point Arithmetic

High-Level Languages

Philosophy of Language Design

This research was sponsored by the Office of Naval Research under grant
numberN0001U-67-A-0112-OO29, The National Science Foundation under grant
number NSF GJ ^08 and the Atomic Energy Commission under grant number
AT (0U-3) 526, PA 30.

''^"^^~ \ II III I II I ..

1. Introduction

A large percentage of the practical numerical algorithms in use today

require some information about the actual floating-point number systeni on

which they are implemented. For example, a zero finder must use some sort

of "machine epsilon" to determine when it has found a "zero". An iterative

improvement subroutine in a linear system solver must stop iterating when

the corrections no longer affect the answer. Sane other algorithms which

require this type of information are: eigenvalue-eigenvector routines,

ordinary differential equation solvers, function minimizers, etc.

Usually this information is supplied to the algorithm in one of two

ways: It is either passed as a parameter or it is imbedded in

one or more constants. In the first case, each user is faced with the

problem of understanding emother confusing parameter in the calling sequence

and he is likely to not know what to use for a "machine epsilon". In the

second case, the "magic" numbers in a program are often not understood by

people reading or translating the program. When the subroutine is moved

from one machine to another, these numbers are seldom changed to reflect

the properties of the new machine — even when the author of the original

program provides explicit comments in the program telling what the constants

mean and how to change them.

Since one of the original motivations for designing and implementing

high-level languages was to allow a program written for one machine to

run on other machines, I think that this problem reflects a serious

shortcoming of languages like Fortran and Algol. Such languages should

provide standard functions which return information pertinent to the machine.

----- li a^*M MM lmmmmammmammil

mmm

However, given these shortcomings, it is reasonable to ask: How can

information about the number system of a computer be determined auto-

matically? That is, can a subroutine written in Fortran compute this

information?

The Fortran subroutine given in the next section partially solves

the problem for a large class of floating-point systans. Another

Fortran subroutine, presented in Section 3, solves the same problem

for a more restricted set of floating-point systems.

2. The Fortran Subroutine ENVRON

For the remainder of this paper, a floating-point number system F

will be characterized as follows: Each number will have a radix ß

and a t-digit mantissa where t > 1 . Usually ß is 2 , 8 , 10 or 16 , but ß

will only be restricted to be a positive integer greater than 1 . The

exponent e is assumed to lie in the range

m < e < M ,

where ra < 0 and M > t . Each nonzero xeF has the representation

x = + .d1d2...dt«ße ,

where d..,...^, are integers satisfying

0 < d. < ß-1 , (i = 1,...,t) .

The number 0 belongs to F . No assumption is made about the representation

of 0 ; however it is usually represented by

0 = + .OO.-.O'ß"1

If x / 0 and d. £ 0 , th^n x is said to be normalized. All

floating-point operations (e.g., addition and multiplication) are

assumed to result in either 0 or a normalized floating-point number.

- — i.- i»■!■ «a imi tagnaantg^ia^g—l—t—M

The machine will do either proper rounding or chopping (truncation).

The machine epsilon mentioned in the previous section is the

smallest positive floating-point number € such that e®l > 1 , where

© denotes floating-point addition. Thus, one could compute € from

ß and t .

The Fortran subroutine shown in Figure 1 can be called with the

Fortran statement

CALL ENVRON (IB, IT, IE)

If the Fortran program is running on a machine with a floating-point

number system of the type just described, then the actual parameters

will be returned with the values

IB = ß ,

IT = t ,

JO, if the machine does chopping,
IR = /

1 1 , if .e machine does proper rounding.

I
1 SUBROUTINE ENVRON (BETA, T,RND)
2 INTEGER BETA, T, RND
5 RND = 1
U A = 2.
5 B = 2.
6 100 IF ((A+l.)-A.NE.l.) GO TO 200
7 A = 2.-X-A
8 GO TO 100
9 200 IF (A+B.NE.A) GO TO 500

10 B = 2.*B
11 GO TO 200
12 300 BETA = (A+B) - A
15 IF (A+(BETA-l).Bq.A) RND = 0
Ik T = 0
15 A = 1
16 hM T = T+l
IT A = A^BETA
18 IF ((A+1)-A.ffii.l) GO TO 1+00
19 RETURN
20 END

Figure 1

akHHMit-^M

,

Suppose the machine on which ENVRCJN is executing has the

floating-point system F . Then the consecutive integers

can he represented exactly in F . Integers larger than ß which

can he represented exactly are

ßVß, ßt+2ß, ß^aß, ..., ßt+1, ßt+V, ...

Thus, the difference between neighboring floating-point numbers in the

interval [ßSß1*1] is ß . The first part of ENVRON (lines h through 8)

tests successive powers of 2 until a floating-point number (A) in

this interval is found. Lines 9 through 12 add successive powers of 2

to A until the next floating-point number (A-ß) is found sind then ß

is computed by subtracting chese two numbers. To determine whether rounding

or chopping is being done (line 13), ß-1 is added to A . Now, since A

is in the interval

the number t can be computed by

t = l_logß Aj .

However, possible inaccuracies in computing the logarithm are avoided by

deteimining the power of ß required to shift the least significant digit

of an integer out of the mantissa. The smallest such exponent is equal

to t .

The time required for ENVRON to execute is roughly proportional to

logp ß . For any practical application, the execution time is negligible.

It is important to note that the algorithm used in ENVRCN does not

rely upon the use of guard digits in the floating-point additions.

^MMaaaaMuMMiM^^H

I) umilii im»iii» um »m^ ! I. I]|IIII.JIIIJIJI»IIII. ■^■mi.»;|.|iiW» ■" Pi I"--" ■! -

The author believes this algorithm to be a very efficient way of

computing ß , t and whether the floating-point system rounds or chops.

5. A Special Algorithm for the Cases ß = 2, h, 8, 10 and 16

After using the technique described in the previous section to

determine the number Ae [ß ,ß) , the following trick can be used

to determine both ß and whether roundintj or chopping is done:

1. Set B:=A+15 (2 is another floating-point representation).

2. If B=A , then ß=l6 and chopping is done.

3. If B=A+8 , then ß=8 and chopping is done.

h. If B=A+10 , then ß=10 and chopping is done.

5. If B=A+12 , then ß=U and chopping is done.

6. If B=A+iU , then ß=2 and chopping is done.

7. If B=A+l6 , then rounding is done and ß is either 2, U, 8 or 16.

8. If B=A+20 , then ß=10 and rounding is done.

The case B=A+l6 can be resolved by

1. Set ^ =A+5.

2. If B=A , then ß=l6 .

5. If B=A+U , then ß=^ .

h. If B=A+6 , then ß=2 .

5. If B=A+8 , then ß=8 .

mmmtmmtam

mmmmmm^mm^—^^^'

A Fortran subroutine incorporating this idea and using the same

name and calling sequence as the subroutine given in Section 2 is shewn

in Figure 2. Although the code is longer than the version in Figure 1,

the execution time for this version is slightly smaller.

SUBROUTINE ENVRON(BErA,T,RND)
INTEGER BETA, T, RND

C
C THIS VERSION WORKS FOR MACHINES WITH BASE 2, h, 8, 10 OR 16
C

RND = 0
A = 2.

10 IF ((A+l.)-A.NK.l.) GO TO 20
A = 2.*A
GO TO .10

20 I = IFIX((A+15.)-A) + 1
GO TO (50,1,1,1,1,1,1,1, kO, 1, 50,1,60,1,70,1, 80,1,1,1, 90), I

1 STOP
50 BETA = 16 -

GO TO 100
hO BETA = 8

GO TO 100
.50 BETA = 10

GO TO 100
60 BETA = k

GO TO 100
70 BETA = 2

GO TO 100
80 RND = 1

I = IFIX((A+5.)-A) + 1
GO TO (82,1,1,1,81*, 1,86,1,88),I

82 BETA = 16
GO TO 100

8^ BETA = h
GO TO 100

86 BETA = 2
GO TO 100

88 BETA = 8
GO TO 100

90 RND = 1
BETA = 10

100 T = 0
A = 1

110 T = T+l
A = A^BETA
IF ((A+l)-A.B^.l) GO TO 110
RETURN
END

Figure 2

- - -

 ^^^^^K^^^mi^m^^mimmmpmmr « < • ' mmw ■ >—-.,_^-_™.,...^—_, ----,_

v T-^ ..- ■., *. ■■

h. Conclusions

The algorithms given in Figures 1 and 2 will determine certain

characteristics of the floating-point number system of any machine

currently in use (at least those floating-point machines of which the

author is aware). Specifically, the number base, number of digits and

whether rounding or chopping is done, can be ccnrputed automatically.

Programs and subroutines in general use, such as library routines,

should avoid additional parameters in the calling sequence and magic

constants in the code by using one of these subroutines for computing

the floating-point environment of the current machine. This not only

makes the code more readable but the portability of the program is

greatly increased. The additional execution time required to call such

a routine is insignificant compared to these advantages.

Unfortunately, it is not possible to write a general subroutine to

compute upper and lower bounds for the floating-point exponent

(m and M) . If underflow and overflow conditions were handled in some

uniform manner, it would be possible to do so. Sane programs make use

of the values of ra and M . Thus it would be worthwhile for software

manufacturers to consider ways of providing such information automatically.

Automatic determination of properties of the integer arithmetic system

would also be useful. A good universal random number generator could

be written if it were possible to automatically determine the magnitude

of the largest representablt integer.

Other desirable environmental parameters are listed in a paper

by Redish and Ward.

'■ ■ ■ ■■ ■■ '■ ■■ mimmmummm^tlllimmiaimm^atttä

mmmm^^* m*m^**—^*n

'j. Acknawledgnient

The author would like to thank Professor Cleve Moler for arousing

his interest in this problem. Mr. Richard Sites contributed some of

the ideas which led to an earlier version of ENVRON. The author

would like to thank Professor Robert Floyd for questioning the

"optimality" of this earlier version and for a discussion which led

to improved versions.

6. Bibliography

Redish, K. A. and Ward, W., "Environment Enquiries for Numerical

Analysis", SIGNUM Newsletter 6 (l), January 1971, 10-15.

8

MOMBMiaaBMa MMMMaaiMM ^■MM

